本发明公开了一种基于Spiking‑SOM神经网络聚类的图像分割系统及方法,首先采取中值滤波方法对目标图像进行去噪;然后利用SLIC算法把目标图像分割成K个超像素作为特征提取窗口,计算超像素内的所有像素的RGB平均值作为超像素的颜色特征;进而选择K个IF神经元构建Spiking‑SOM神经网络,基于计算超像素之间颜色特征的距离来构建网络的初始权值矩阵,并采用Hebbian规则训练网络,网络训练结束后,根据神经元放电的同步与异步进行聚类;最后计算同类的超像素的RGB平均值,并用其代替原来的超像素RGB值,重置图像矩阵后,得到图像分割结果。本发明综合了分割速度和分割精度优势,能够对自然场景中的彩色图像进行有效分割,具有一定的潜在应用价值和先进性。
咨询热线:020-38033421
传真号码:020-38061201
电子邮箱:jm@jiaquanip.cn
Copyright © 嘉权专利商标事务所 All Rights Reserved. 粤ICP备2023151901号